Математическая карта темы «Подобные треугольники»

Педагогика и воспитание » Методика изучения темы "Подобные треугольники" » Математическая карта темы «Подобные треугольники»

Страница 1

Анализ понятийного аппарата темы «Подобные треугольники»

Формулировка определяемого понятия

Логический анализ структуры определения

Подведение под понятие

Следствия из определения

Возможные ошибки учащихся

Термин

Род

Видовые отличия

Логические связи

Вид определения

Опорные знания

1

2

3

4

5

6

7

8

9

10

1.Отношением отрезков AB и CD, есть отношение их длин,

т.е.

Отношение отрезков

число

конъюнкция

конструктивное

Длина отрезка, обозначение отрезков

с помощью предложений учеников и помощи учителя

Пропорциональные отрезки

Напомнить учащимся, что длина выражается положительным числом

2.Отрезки AB и CD, пропорциональны отрезкам A1B1 и C1D1, если

Пропорциональные отрезки

число

конъюнкция

конструктивное

Отношение отрезков, длина отрезков

Учителем

Пропорциональность трех отрезков другим трем отрезкам

Неправильное расположение членов пропорции

3. Если все углы одного треугольника равны углам другого треугольника, то стороны треугольников называются сходственными

Сходственные стороны треугольников

стороны

ÐA=ÐA1 , ÐB=ÐB1

ÐC=ÐC1 , то AB и A1B1,BC и B1C1, AC и A1C1 , сходственные

конъюнкция

конструктивное

Углы, стороны треугольника

с помощью предложений учеников и помощи учителя

Выделение основных элементов подобия треугольников

4. Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого

подобные треугольники

треугольник

ÐA=ÐA1 , ÐB=ÐB1

ÐC=ÐC1,

конъюнкция

конструктивное

Треугольник, углы треугольника, сходственные стороны треугольника

Понятие дается учителем

Выделение числа k, умение определять подобные треугольники, признаки подобия треугольников

Неправильное определение сходственных сторон и их запись в пропорции

5.Средней линией треугольника называется отрезок, соединяющий середины двух его сторон

Средняя линия треугольника

отрезок

DABC,

MN-средняя линия, тогда

AM=MB,

BN=NC.

конъюнкция

конструктивное

треугольник

с помощью предложений учеников и помощи учителя

Решение задач и доказательство теорем

6. Фигуры F и F1 называются подобными, если каждой точке фигуры F можно сопоставить точку фигуры F1 так, что для любых других точек M и N фигуры F и сопоставленных им точек M1 и N1 фигуры F1, выполняется условие , где k одно и тоже положительное число для всех точек

Подобные фигуры

фигуры

конъюнкция

конструктивное

Подобные треугольники

понятие дается учителем

Для практического решения задач

Из-за громоздкости определения, возможно, его не понимание

Страницы: 1 2 3

Похожие статьи:

Концепция физкультурного воспитания: методология развития и технология реализации
В условиях переустройства российского общества остро стоит вопрос о состоянии здоровья детей и учащейся молодежи. Спорт, физическая культура, здоровый образ жизни должны стать надежной защитой, способной помочь детям адаптироваться к новым условиям жизнедеятельности, противостоять непрерывно ухудша ...

Методика разработки программы развития ДОУ
Программа развития дошкольного учреждения должна отвечать следующим качествам: Актуальность — свойство программы быть ориентированной на решение наиболее важных проблем для будущей системы дошкольного воспитания конкретного детского сада. Прогностичность — свойство программы отражать в своих целях ...

Анализ педагогических ситуаций и решение педагогических задач
Педагогическая работа – одна из тех, которую можно назвать теорией в действии. Теоретические основы пед. деятельности – принципы, формы, методы обучения и воспитания не посвященному в практическую работу человеку кажутся отвлеченными абстракциями. Уровень обыденного педагогического сознания в работ ...

Copyright © 2013-2021 - All Rights Reserved - www.getvos.site